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ABSTRACT
Graph neural networks (GNNs) have emerged as the state-of-the-art
paradigm for collaborative filtering (CF). To improve the represen-
tation quality over limited labeled data, contrastive learning has at-
tracted attention in recommendation and benefited graph-based CF
model recently. However, the success of most contrastive methods
heavily relies onmanually generating effective contrastive views for
heuristic-based data augmentation. This does not generalize across
different datasets and downstream recommendation tasks, which is
difficult to be adaptive for data augmentation and robust to noise
perturbation. To fill this crucial gap, this work proposes a unified
Automated Collaborative Filtering (AutoCF) to automatically per-
form data augmentation for recommendation. Specifically, we focus
on the generative self-supervised learning framework with a learn-
able augmentation paradigm that benefits the automated distillation
of important self-supervised signals. To enhance the representation
discrimination ability, our masked graph autoencoder is designed
to aggregate global information during the augmentation via re-
constructing the masked subgraph structures. Experiments and
ablation studies are performed on several public datasets for recom-
mending products, venues, and locations. Results demonstrate the
superiority of AutoCF against various baseline methods. We release
the model implementation at https://github.com/HKUDS/AutoCF.
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1 INTRODUCTION
Recommender systems, which aim to suggest items to users by
learning their personalized interests, have provided essential web
services (e.g., E-commerce sites, online reviews, and advertising
platforms) to alleviate the information overload problem [40]. The
core part of recommenders lies in effective modeling of user prefer-
ence on various items based on observed historical interactions.

To date, various types of collaborative filtering (CF) techniques
have been proposed to project users and items into latent embed-
ding space, such as matrix factorization [22], autoencoder [28],
attention mechanism [4]. In the context of graph learning, graph
neural networks (GNNs) have emerged as the state-of-the-art frame-
works for collaborative filtering (CF) with the modeling of high-
order connectivity among users and items, such as GCMC [1],
NGCF [35], LightGCN [15] and GCCF [5]. These recommender sys-
tems are proposed to perform the recursive message passing over
the generated user-item interaction graph. However, the success of
such methods largely relies on sufficient high quality labels, and
cannot produce accurate user and item representations when the
observed labeled data is scarce and noisy [39]. Recently, contrastive
self-supervised learning (SSL) has achieved promising results in
generating representations with small labeled data with yielding
auxiliary self-supervision signals in Computer Vision [13] and Na-
ture Language Processing [27]. Motivated by this, recent recom-
mendation studies propose to address the limitation of heavy label
reliance in current GNN-based recommendation models based on
various contrastive learning techniques for data augmentation.

According to the ways in which contrastive views are gener-
ated for collaborative filtering, recent contrastive learning mod-
els can be broadly categorized into different aspects: i) Structure-
Level Augmentation: Models such as SGL [39] and DCL [25] em-
ploy random node and edge dropout to create contrastive views
based on graph topology augmentation. ii) Feature-Level Augmen-
tation: SLRec [47] generates contrasts between feature vectors that
have been corrupted by random noise for augmentation purposes.
iii) Local-Global Augmentation: This line aims to reconcile local
user and item embeddings with global information by performing
local-global contrastive learning. To achieve this goal, various infor-
mation aggregators are used to produce global-level embeddings,
including hypergraph-enhanced message fusion in HCCF [42] and
EM algorithm-based node clustering in NCL [24].

However, current contrastive learning recommenders heavily
rely on manually generated contrastive views for heuristic-based
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Figure 1: The influence of data noise and long-tail distribu-
tions on the prediction accuracy of different methods.

data augmentation. The effectiveness of these approaches is guar-
anteed only when the contrastive views are properly specified for
different datasets and tasks. In diverse recommendation scenarios,
accurate generation of contrastive representation views is very
challenging and manually performing data augmentation may un-
avoidably involve noisy and irrelevant information for SSL.

From the perspective of graph structure-level and local-global
augmentation, the self-discrinimation through random node/edge
dropout operations may lead to i) losing important structural in-
formation (e.g., limited interactions of inactive users); and ii) keep-
ing the noisy data (e.g., misclick behaviors or popularity bias) for
contrasting samples. To have a better understanding of the afore-
mentioned limitations in current methods, Figure 1 presents the
performance comparison of different methods against data noise
and long-tail distributions. Specifically, we contaminate the train-
ing set with different ratios of adversarial user-item interactions
as noisy examples. In addition, we randomly sample three datasets
from Gowalla with different long-tail distributions (shown in Fig-
ure 1 (c)). The superior performance of our AutoCF indicates that
existing state-of-the-art SSL recommendation models can hardly
learn high-quality user (item) representations when faced with data
noise and long-tail issues. The performance of compared current
contrastive methods (e.g., NCL [24]) vary greatly with different
recommendation data distributions.

Therefore, current contrastive recommender systems are still
vulnerable to the quality of the augmented supervision signals, due
to their handcrafted strategies of non-adaptive contrastive view
generation. With the consideration of limitations in existing work,
we believe it is essential to design a unified SSL-based recommen-
dation model, which not only can distill self-supervised signals
for effective data augmentation, but also relieve human efforts to
manually in generating self-supervision signals or defining aug-
mentation strategies. Towards this end, an interesting question
may be raised: is there a principled way to automatically distill the
important self-supervision signals for adaptive augmentation?

Inspired by the emerging success of generative self-supervised
learning in vision learner [12] with the reconstruction objectives,
we propose an automated framework for self-supervised augmenta-
tion in graph-based CF paradigm via a masked graph auto-encoder
architecture, to explore the following questions for model design.
• Q1: How to automatically distill self-supervised signals which
are more beneficial for the recommendation objective?
• Q2: How to enable the learnable graph augmentation by well
preserving informative collaborative relationships?
• Q3: How to design the graph auto-encoder framework in global
information aggregation for the adaptive graph reconstruction.

Contributions. To tackle these challenges, we propose a new
Automated Collaborative Flitering (AutoCF) which is capable of
distilling the graph structure-adaptive self-supervised signals for
advancing the graph-based CF framework. In particular, we design
a learnable masking function to automatically identify the impor-
tant centric nodes for reconstruction-based data augmentation. In
the mask learning stage, the node-specific subgraph semantic relat-
edness will be considered to accurately preserve the graph-based
collaborative relationships. Additionally, we propose a new masked
graph autoencoder in which the key ingredient is a graph neu-
ral encoder that captures the global collaborative relationships for
reconstructing the masked user-item subgraph structures.

In summary, our work makes the following contributions:
• Investigate the drawbacks of existing contrastive GNN-based
recommendation methods with the non-adaptive self-supervised
augmentation and weak robustness against noise perturbation.
• Propose an automated self-supervised learning model AutoCF,
in which a learning to mask paradigm is designed to perform
data augmentation with structure-adaptive self-supervision. In
addition, the automated mask generator is integrated with graph
masked autoencoder to enhance user representations with SSL.
• Demonstrate the significant improvements that AutoCF achieves
over state-of-the-art GNN-based and SSL-enhanced recommenders,
including some recent strong baselines NCL and HCCF.

2 GRAPH CONTRASTIVE LEARNING FOR
COLLABORATIVE FILTERING

Recap of Graph-based Collaborative Filtering. In general, the
input data for recommender systems involve an user setU = {𝑢},
an item set I = {𝑖} and observed user-item relations represented by
an interaction matrix A ∈ R |U |×|I | . In A, each element 𝑎𝑢,𝑖 = 1 if
user 𝑢 has adopted item 𝑖 before, 𝑎𝑢,𝑖 = 0 given the non-interaction
between user 𝑢 and item 𝑖 . To improve the user-item interaction
modeling with high-order connectivity, graph-based collaborative
filtering models have shown their effectiveness through the recur-
sive message propagation over the constructed interaction graph
G = {U,I, E} between 𝑢 and 𝑖 for embedding refinement :

h𝑙𝑢 ← Aggre𝑖∈N𝑢

(
Const(h𝑙−1

𝑖 ,h𝑙−1
𝑢 , 𝑒𝑢,𝑖 )

)
h𝑙𝑖 ← Aggre𝑢∈N𝑖

(
Const(h𝑙−1

𝑢 ,h𝑙−1
𝑖 , 𝑒𝑖,𝑢 )

)
(1)

where in G, users and items are connected through their interac-
tion edges (𝑒𝑢,𝑖 ) based on the interaction matrix A. h𝑙−1

𝑢 and h𝑙−1
𝑖

denote the embedding of user 𝑢 and item 𝑖 at the (𝑙 − 1)-th graph
neural layer. The core of graph-based CF paradigm contains: i) the
message construction function Const(·) which extracts the feature
information from the connected users or items; ii) the information
aggregation function Aggre(·) for gathering the embeddings from
the neigboring nodes 𝑖 ∈ N𝑢 or 𝑢 ∈ N𝑖 , using different operators,
such as mean-pooling, summation, or attentive combination.
Contrastive Augmentation on Interaction Graph. Inspired by
the recent success of contrastive learning [20, 31], several recent
studies propose to perform graph contrastive learning (GCL) over
the user-item interaction data with various data augmentation
strategies. In general, contrastive learning-enhanced recommender
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systems aim to reach the alignment between the generated contrast-
ing representation views, so as to inject the auxiliary self-supervised
objective Lssl into the recommendation loss Lrec with the joint
model optimization for estimating the 𝑢 − 𝑖 interaction likelihood:

𝑦𝑢,𝑖 = 𝑓 (G;Θ) [𝑢, 𝑖]; min
Θ
Lrec (𝑓 ,G) + Lssl (𝑓 ,G;𝜑) (2)

However, the success of most state-of-the-art GCL-based rec-
ommendation solutions largely relies on the careful design of con-
trastive views and handcrafted augmentation strategies 𝜑 . To ad-
dress this limitation, this work aims to design graph augmentation
scheme that enables the automated self-supervision signal genera-
tion for adaptive data augmentation in recommendation.

3 METHODOLOGY
This section elaborates the technical details of adaptive masked
graph autoencoder–AutoCF–to enhance user representation with
the automated distillation of self-supervision signals based on graph
neural networks. We present the architecture of AutoCF in Figure 2.

3.1 Automated Graph Augmentation
3.1.1 Learning to Mask Paradigm. To automatically distill the
reconstructed self-supervised signals over the graph-structured
interaction data G, we propose to reconsutrct the masked user-
item interaction edges adaptively for benefiting the modeling of
high-order graph collobrative relationships. The core idea of our
learnable mask scheme is to first identify the centric nodes in G
and then mask the informative interaction edges based on their
subgraph structual information. In general, the learnable graph-
based interaction mask function 𝜑 (·) in AutoCF can be formalized:

𝜑 (G,V;𝑘) =
{
U,I,V, E\ {(𝑣1, 𝑣2) |𝑣1, 𝑣2 ∈ N𝑘

𝑣 , 𝑣 ∈ V}
}

(3)

where V is the set of centric nodes in 𝜑 (·). N𝑘
𝑣 denotes the set

of neighborhood nodes of 𝑣 within 𝑘 hops. Here, 𝑘 is a hyperpa-
rameter to control the injection of high-order connectivity during
the reconstruction-based self-augmentation. (𝑣1, 𝑣2) denotes the
existing edge masked through the set subtraction operation “\”, in
the sampled subgraph structure given the centric node 𝑣 ∈ V .

3.1.2 Infomax-based SemanticRelatedness. Towards this end,
motivated by the mutual information encoding over graphs [29, 32],
we leverage the mutual information to measure the semantic re-
latedness between the node-level embedding and subgraph-level
representation, based on the high-order graph collaborative re-
lations among users and items. Formally, the subgraph semantic
relatedness score 𝑠𝑣 of node 𝑣 can be derived as follows:

𝑠𝑣 = 𝜓 (𝑣 ;𝑘) = sigm(h⊤𝑣
∑︁

𝑣′∈N𝑘
𝑣

h𝑣′/(|N𝑘
𝑣 | · ∥h𝑣 ∥ · ∥h𝑣′ ∥)) (4)

where h𝑣,h𝑣′ ∈ R𝑑 denote randomly-initialized user/item embed-
dings. sigm(·) dentoes the sigmoid activation. The subgraph-level
representation is generated by aggregating the embeddings of all
nodes (𝑣 ′ ∈ N𝑘

𝑣 ) contained in this 𝑘-order subgraph except the
centric node 𝑣 , using readout functions, such as mean-pooling or
summation [32]. The larger semantic relatedness score indicates
not only the higher structural consistency between the target user
and his/her graph dependent nodes (users and items), but also the
lower percentage of topological information noise in the sampled

subgraph. For example, an outlier user with many item misclicks
will lead to lower structural consistency with others with respect
to their collaborative relationships of interaction data.

3.1.3 Learning toMaskwithGumbel Distribution. Given the
designed learnable masking function 𝜑 (G,V;𝑘), our AutoCF is
capable of automatically generating the self-supervised reconstruc-
tion signals of user-item interactions, which offers adaptive data
augmentation. To improve the robutness of our learning to mask
paradigm 𝜑 (G,V;𝑘), we inject the Gumbel-distributed noises [19]
into the deriviation of node-specific mask probability𝜓 (𝑣 ;𝑘):
𝜓 ′(𝑣 ;𝑘) = log𝜓 (𝑣 ;𝑘) − log(− log(𝜇)); 𝜇 ∼ Uniform(0, 1) (5)

Based on the estimated mask probabilities𝜓 ′(𝑣 ;𝑘) of all nodes in
𝑣 ∈ V , we generate a set of 𝑆 centric nodes by selecting the top-
ranked user and item nodes in terms of the learned mask probabili-
ties. To supercharge our AutoCF with learnable data augmentation,
we further inject the SSL signals via the subgraph mutual infor-
mation maximization using the following infomax-based opimized
objective LInfoM = −∑𝑣∈U∪I 𝜓 (𝑣 ;𝑘).

3.2 Masked Graph Autoencoder
The goal of AutoCF is to augment the graph-based collaborative
filtering with a reconstruction learning task over the masked user-
item interaction edges in graph G. After applying our learning to
mask paradigm, we feed the augmented graph with the masked
edges into our developed graph autoencoder framework. In partic-
ular, AutoCF proposes to leverage graph convolutional network,
which is widely used in previous recommender systems [15], as the
encoder to incorporate graph structural information into user and
item node embeddings. To alleviate the over-smoothing issue in
GNNs and supercharge AutoCF with the global information aggre-
gation, we adopt graph self-attention as the decoder to bridge the
encoder and the auxiliary self-supervised reconstruction task.
3.2.1 Graph Convolution-based Structure Encoder. Recent
studies (e.g., SGL [39] and LightGCN [15]) have demontrated the
effectiveness of lightweight graph convolution-based message pass-
ing for encoding the structual information. Motivated by this, given
the corrupted interaction graph G′ = 𝜑 (G,V;𝑘) output from our
mask function 𝜑 (G,V;𝑘), our encoder in AutoCF is built over the
following embedding propagation schema:

h𝑙+1𝑣 = 𝛼𝑣,𝑣 · h𝑙𝑣 +
∑︁

𝑣′∈N′𝑣
𝛼𝑣,𝑣′ · h𝑙𝑣′ ; 𝛼𝑣,𝑣′ = 1/

√︃
|N ′𝑣 | |N ′𝑣′ | (6)

where h𝑙𝑣,h𝑙+1𝑣 ∈ R𝑑 denotes the node embeddings of node 𝑣 in the
𝑙-th and the (𝑙 + 1)-th graph neural layers, respectively. The scalar
𝛼𝑣,𝑣′ serves as the normalization weight for node pair (𝑣, 𝑣 ′), which
is calculated based on the node degree |N ′𝑣 |, |N ′𝑣′ |. N

′
𝑣 denotes the

neighborhood set of node 𝑣 in the augmented graph G′. During
our embedding passing process, AutoCF applies the residual con-
nections to enable the self-propagation in the last graph layer, in
order to alleviate the gradient vanishing issue [14].
3.2.2 Graph Self-Attention Decoder. Although the graph con-
volutional encoder allows us to capture the user-item interaction
graph structure, the over-smoothing problem will become a natu-
ral effect with increasing the graph propagation layers [3, 6]. To
alleviate this limitation, we design the graph self-attention module
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Figure 2: The framework of AutoCF is composed of: i) the adaptive graph structure augmentation based on infomax related-
ness; ii) the masked graph autoencoder based on the graph self-attention architecture; iii) the self-augmented training para-
digm including graph structure reconstruction, node-subgraph mutual information maximization, and contrastive learning.

as the decoder in AutoCF for the self-supervised structure recon-
struction, with the global self-attention for long-range information
aggregation, rather than the localized convolutional fusion.

While the attention-based information aggregation addresses
the limitation of localized GCN with limited receptive field, the
high computational complexity limits its feasibility to perform
message passing over the large number of graph user and item
nodes. Inspired by the efficient transformer design in encoding
long sequences [21] and high-resolution images [50], we propose
to conduct the pairwise relation learning over a subset of nodes
with the emphasis on the masked subgraph structure. By doing so,
we can not only improve the efficiency of our graph self-attention
decoder, but also further capture the high-order structural informa-
tion of centric nodesV with high subgraph semantic relatedness.
Specifically, we firstly define a vertex set V̄ to include the vertices
from all the masked subgraphs. Given V̄ , a subset Ṽ of nodes will
be added from the remaining nodes ((U ∪I)\V̄). Then, node pairs
Ē are then selected from the union node set, and combined with
the edges in G′ using the following formulas:

G̃ = {U,V, Ẽ = Ē ∪ E ′}; Ē = {(𝑣1, 𝑣2) |𝑣1, 𝑣2 ∈ V̄ ∪ Ṽ}
s.t. |Ē | = |E ′ |, |V̄ ∪ Ṽ | = 𝜌 · ( |U| + |I|) (7)

where E ′ denotes the edge set of the augmented graph G′ =

𝜑 (G,V;𝑘). 𝜌 is a hyperparameter to control the ratio of the node
set. Given the constructed node pairs for global self-attention ag-
gregation, the graph attention-based message passing is presented:

h𝑙+1𝑣 =
∑︁
𝑣′

𝐻������
ℎ=1

𝑚𝑣,𝑣′𝛽
ℎ
𝑣,𝑣′W

ℎ
Vh

𝑙
𝑣′ ; 𝑚𝑣,𝑣′ =

{
1 if (𝑣, 𝑣 ′) ∈ Ẽ
0 otherwise

𝛽ℎ𝑣,𝑣′ =
exp 𝛽ℎ

𝑣,𝑣′∑
𝑣′ exp 𝛽ℎ

𝑣,𝑣′
; 𝛽ℎ𝑣,𝑣′ =

(Wℎ
Q · h

𝑙
𝑣)⊤ · (Wℎ

K · h
𝑙
𝑣′)√︁

𝑑/𝐻
(8)

where 𝐻 denotes the number of attention heads (indexed by ℎ).
𝑚𝑣,𝑣′ is the binary indicator to decide whether to calculate the
attentive relations between node 𝑣 and 𝑣 ′. 𝛽ℎ

𝑣,𝑣′ denotes the attention
weight for node pair (𝑣, 𝑣 ′) w.r.t the ℎ-th head representation space.
Wℎ

Q,W
ℎ
K,W

ℎ
V ∈ R

𝑑/𝐻×𝑑 denotes the query, the key, and the value
embedding projection for the ℎ-th head, respectively.

Different from conventional graph auto-encoders [11, 30], our
AutoCF aims to recover the masked interaction graph structure by
learning to discover the masked user-item edges. With the encoded
layer-specific user/item representations h𝑙𝑢 and h𝑙𝑖 , the overall em-
beddings are generated through layer-wise aggregation. Formally,

the reconstruction phase over the masked graph structures is:

Lrecon = −
∑︁

(𝑣,𝑣′) ∈E\E′
ĥ
⊤
𝑣 · ĥ𝑣′ ; ĥ𝑣 =

𝐿∑︁
𝑙=0

h𝑙𝑣 (9)

3.3 Model Training
In our model training stage, we further introduce a contrastive train-
ing strategy to enhance the representation discrinimation ability
with uniformly-distributed user/item embeddings, so as to better
preserve the unique preference of users in latent space. Inspired by
the InfoNCE-based augmentation in [39], in the learning process
of AutoCF, we propose to generate more uniform user and item
embeddings with the regularization for user-item, user-user, item-
item pairs, for improving the embedding discrinimation ability and
further alleviating the over-smoothing effect. The loss functionLssl
with the augmented self-supervised learning objectives is:

Lssl =
∑︁
𝑢∈U

log
∑︁
𝑖∈I

exp ĥ⊤𝑢 ĥ𝑖 +
∑︁
𝑢∈U

log
∑︁

𝑢′∈U
exp ĥ⊤𝑢 ĥ𝑢′

+
∑︁
𝑖∈I

log
∑︁
𝑖′∈I

exp ĥ⊤𝑖 ĥ𝑖′ + LInfoM + Lrecon (10)

To perform the learning process with the main recommendation
task and augmented SSL optimized objectives, we define our joint
loss function for model optimization as follows:

L = −
∑︁
(𝑢,𝑖) ∈E

ĥ
⊤
𝑢 · ĥ𝑖 + 𝜆1 · Lssl + 𝜆2 · ∥Θ∥2F (11)

𝜆1 and 𝜆2 control the regularization strength of the distilled self-
supervised signals and weight-decay constrain term.

3.4 Theoretical and Complexity Analysis
3.4.1 Noise Filtering via Infomax. In this section, we give a the-
oretical discussion on the benefits of our infomax-based semantic
relatedness in alleviating noisy signals for SSL-based augmentation.
By avoiding involving noise in our adaptive graph augmentation
using infomax, the masked autoencoding task better benefits the
downstream recommendation task with noise-less gradients. De-
tailed derivations are presented in Section A.6. In brief, we first
analyze the source of noises by giving the gradient of Lrecon over
the embedding h𝑣1 of a node 𝑣1 in the masked subgraph as:

𝜕Lrecon
𝜕h𝑣1

= −
∑︁

(𝑣1,𝑣2) ∈E\E′
h𝑣2 +

∑︁
𝑚𝑣2,𝑣′=1

𝛽 ′𝑣2,𝑣′
W′Vh𝑣′ (12)



Table 1: Statistics of the experimental datasets.
Dataset # Users # Items # Interactions Interaction Density
Gowalla 25,557 19,747 294,983 5.85 × 10−4

Yelp 42,712 26,822 182,357 1.59 × 10−4

Amazon 76,469 83,761 966,680 1.51 × 10−4

where node 𝑣2 is adjacent to 𝑣1, 𝑣 ′ is an arbitrary node, most-
probably from the masked subgraph due to our mask-dependent
sampling strategy (Section 3.2.2). By inspecting the gradient in
Eq 12, we find that the second term introduces noise if 𝑣 ′ is semanti-
cally less-relevant to 𝑣1. Specifically, although the weight 𝛽 ′

𝑣2,𝑣′
can

reduce the influence of irrelevant 𝑣 ′, it is normalized using softmax
with high temperature, which in practical learning process, is prone
to assigning non-neligable weights to less-relevant 𝑣 ′ when a large
portion of nodes in the masked subgraph are less-relevant.

To avoid the above situation, AutoCF learns to mask noise-less
subgraphs by referring to the infomax-based relatedness 𝑠𝑣 . For a
centric node 𝑣 , 𝑠𝑣 not only measures the relatedness between 𝑣 and
its neighboring nodes, but also restricts the lowerbound of semantic
relatedness between any pair of nodes in the subgraph, as follows:

cos(𝑣1, 𝑣
′) > cos(𝑣, 𝑣1) + cos(𝑣, 𝑣 ′) − 1 (13)

As subgraphs with larger 𝑠𝑣 have larger center-neighbor similarity
cos(𝑣, 𝑣1) and cos(𝑣, 𝑣 ′), larger 𝑠𝑣 also indicates higher lowerbound
for the semantic relatedeness between any nodes (𝑣1, 𝑣 ′) in the sub-
graph. In other words, by masking subgraphs with larger infomax-
based relatedness, AutoCF reduces the likelihood of introducing
noisy gradient in the self-augmented reconstruction task.
3.4.2 Model Complexity Analysis. We analyze the time com-
plexity of our AutoCF from different components. i) In the learning
to mask paradigm, the subgraph-level embedding generation pro-
cess takesO(𝑘×|E|×𝑑) complexity for maintainaning amulti-order
node intersection set. Here, |E | denotes the size of the edge set and
𝑑 is the latent embedding dimensionality. Additionally, the masked
edge detection takes O(|E| × |V𝑘′ |) time, whereV𝑘′ denotes the
set of centric nodes for the 𝑘 ′-th iteration (V0 = V , 1 ≤ 𝑘 ′ ≤ 𝑘).
ii) In the masked graph autoencoder component, the most time-
consuming part is the graph self-attention which takes O(|E| ×𝑑2)
complexity. iii) In the model training phase, contrastive augmenta-
tion takes O(𝐵 × (|U| + |I|) ×𝑑) with 𝐵 denoting the batch size. In
summary, our AutoCF can achieve comparable overall complexity
compared with state-of-the-art graph contrastive recommendation
models, such as HCCF [42] and SGL [39].

4 EVALUATION
In this section, experiments are performed to validate AutoCF’s
advantage and answer the following key research questions:
• RQ1: How effective is our proposed AutoCF method perform
against various recommendation techniques?
• RQ2: How effective are the main components of our AutoCF?
• RQ3: How is the sensitivity of the hyperparameters in AutoCF?
• RQ4: How efficient is our AutoCF compared with baselines?
• RQ5: How is the interpretation ability of the proposed AutoCF?

4.1 Experimental Settings
4.1.1 Datasets and Evaluation Protocols. We use three widely-
used datasets, including Gowalla, Yelp and Amazon to evaluate

the performance of different recommendation tasks for locations,
venues and online products.Gowalla. This dataset is collected from
a location-based service to record the check-in behaviors between
users and different locations from Jan, 2010 to Jun, 2010. Yelp. This
dataset contains user-venue rating interaction from Jan, 2018 to
Jun, 2018 on Yelp platform. Amazon. This is another benchmark
dataset in evaluating recommender systems. We use the version of
user implicit feedback over the book category of items.

In our experiments, 70% of the observed interactions are ran-
domly sampled to generate the training set. In the remaining 30%
data, 5% and 25% percentage of interactions are used for validation
and testing. Following the same settings in [39, 42], we adopt the
all-rank evaluation protocol [23] to measure the item recommenda-
tion accuracy for each user. Two representative evaluation metrics
Recall@N and NDCG@N are used to evaluate all methods.
4.1.2 Baseline Methods. For comprehensive performance com-
parision, our baseline set contains 14 recommendation methods.
1) Conventional Collaborative Filtering Methods
• BiasMF [22]: This is a widely-adopted matrix factorization base-
line which projects users and items into latent vectors.
• NCF [16]: It is a representative neural CF method which replaces
the inner-product with the non-linear feature projection.

2) Autoencoder-based Recommender System
• AutoR [28]: It employs the autoencoder to generate the embed-
dings of users and items with the reconstruction loss.

3) GNN-based Collaborative Filtering
• PinSage [48]: It leverages the graph convolution network to
model the user-item interaction through graph structures.
• STGCN [51]: It design the graph autoencoding for high-order
interaction learning with the reconstruction regularization.
• GCMC [1]: It is one of the pioneering CF models that enhances
the matrix completion with GNN-based message passing.
• NGCF [35]: It is one of the state-of-the-art graph CF models that
incorporates high-order connectivity for recommendation.
• GCCF [5] and LightGCN [15]: To simplify the message passing
scheme, recent studies propose to omit the non-linear feature
transformation and activiation, which achieves better results.

4) Disentangled Representation-enhanced GNN Model
• DGCF [36]: This method disentangles latent factors behind user-
item interactions under the graph neural network architecture,
to capture the fine-grained user-item relationships.

5) SOTA Self-Supervised Recommendation Methods
• SLRec [47]: This self-supervised learning method conducts data
augmentation with the learning of latent feature correlations.
• NCL [24]: It enhances the graph contrastive learning with the
augmented structural and semantic-relevant training pairs.
• SGL [39]: This method applies random structure augmentation
such as node/edge drop and randomwalk, to generate contrastive
views for graph augmentation in collaborative filtering.
• HCCF [42]: This method conducts local-global cross-view con-
trastive learning with hypergraph-based structure learning.

4.1.3 Hyperparameter Settings. We implement AutoCF with
PyTorch. The Adam optimizer is used for parameter inference,
with learning rate of 1𝑒−3 and batch size of 4096. By default, the



Table 2: Performance comparison on Gowalla, Yelp, and Amazon datasets in terms of Recall and NDCG.
Data Metric BiasMF NCF AutoR PinSage STGCN GCMC NGCF GCCF LightGCN DGCF SLRec NCL SGL HCCF AutoCF p-val.

Gowalla

Recall@20 0.0867 0.1019 0.1477 0.1235 0.1574 0.1863 0.1757 0.2012 0.2230 0.2055 0.2001 0.2283 0.2332 0.2293 0.2538 1.3𝑒−10

NDCG@20 0.0579 0.0674 0.0690 0.0809 0.1042 0.1151 0.1135 0.1282 0.1433 0.1312 0.1298 0.1478 0.1509 0.1482 0.1645 4.9𝑒−12

Recall@40 0.1269 0.1563 0.2511 0.1882 0.2318 0.2627 0.2586 0.2903 0.3181 0.2929 0.2863 0.3232 0.3251 0.3258 0.3441 9.3𝑒−10

NDCG@40 0.0695 0.0833 0.0985 0.0994 0.1252 0.1390 0.1367 0.1532 0.1670 0.1555 0.1540 0.1745 0.1780 0.1751 0.1898 1.0𝑒−9

Yelp

Recall@20 0.0198 0.0304 0.0491 0.0510 0.0562 0.0584 0.0681 0.0742 0.0761 0.0700 0.0665 0.0806 0.0803 0.0789 0.0869 6.2𝑒−7

NDCG@20 0.0094 0.0143 0.0222 0.0245 0.0282 0.0280 0.0336 0.0365 0.0373 0.0347 0.0327 0.0402 0.0398 0.0391 0.0437 1.0𝑒−6

Recall@40 0.0307 0.0487 0.0692 0.0743 0.0856 0.0891 0.1019 0.1151 0.1175 0.1072 0.1032 0.1230 0.1226 0.1210 0.1273 1.2𝑒−4

NDCG@40 0.0120 0.0187 0.0268 0.0315 0.0355 0.0360 0.0419 0.0466 0.0474 0.0437 0.0418 0.0505 0.0502 0.0492 0.0533 1.1𝑒−5

Amazon

Recall@20 0.0324 0.0367 0.0525 0.0486 0.0583 0.0837 0.0551 0.0772 0.0868 0.0617 0.0742 0.0955 0.0874 0.0885 0.1277 5.1𝑒−13

NDCG@20 0.0211 0.0234 0.0318 0.0317 0.0377 0.0579 0.0353 0.0501 0.0571 0.0372 0.0480 0.0623 0.5690 0.0578 0.0879 8.0𝑒−13

Recall@40 0.0578 0.0600 0.0826 0.0773 0.0908 0.1196 0.0876 0.1175 0.1285 0.0912 0.1123 0.1409 0.1312 0.1335 0.1782 7.3𝑒−13

NDCG@40 0.0293 0.0306 0.0415 0.0402 0.0478 0.0692 0.0454 0.0625 0.0697 0.0468 0.0598 0.0764 0.0704 0.0716 0.1048 1.5𝑒−13
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Figure 3: Performance against data sparsity. Left-side y-axis:
performance curve of each method. Right-side y-axis: im-
provement ratio between AutoCF and each baseline.

hidden dimensionality is set as 32, and the number of graph neural
iterations is tuned from {1,2,3}. The graph self-attention employs
4 attention heads. We conduct subgraph sampling for every 10,
30, or 60 steps for further improving the model efficiency. In our
learning to mask paradigm, the size of centric nodes is selected
from {200, 400, ..., 1800, 2000}. The ratio of sampled nodes 𝜌 is set as
0.2. We select the number of graph hops for subgraph masking from
{1,2,3} to reflect the high-order semantic relatedness. In the model
training phase, 𝜆1 and 𝜆2 are respectively chosen from {1𝑒−𝑘 | − 1 ≤
𝑘 ≤ 4} and {1𝑒−𝑘 |3 ≤ 𝑘 ≤ 8} to control the regularization strength
of weight-decay factor and the augmented self-supervised signals.

4.2 Overall Performance Comparison (RQ1)
Table 2 lists the overall performance of all compared methods on
three datasets. From the results, we have the observations below:
• Obs.1: Superiority over SOTA SSL approaches. AutoCF con-
sistently achieves the best performance compared with SOTA
recommendation approaches by a large margin (measured by cal-
culated 𝑝-values), including strong self-supervised approaches
in all datasets. By incorporating the adaptive data augmentation
into the graph SSL framework through our learning to mask par-
adigm, AutoCF surpasses existing solutions with the automated
self-supervised signal generation. The augmentation strategy in
current SSL methods (e.g., SGL, HCCF) with self-discrimination
over all nodes, which make them vulnerable to the perturbation,
such as popularity bias and interaction noise. That is, with the
careful design of our graph augmentation scheme adaptive for the
infomax-based collaborative relation learning, self-supervised
signals with more beneficial instances will be automately identi-
fied for data augmentation.
• Obs.2: Benefits with SSL augmentation. Comparing various
baselines, we notice that SSL methods (i.e., HCCF, SGL, NCL)
outperforms pure GNN-based CF models (e.g., LightGCN, NGCF,
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Figure 4: Module ablation study on Yelp and Gowalla.

GCCF) in most cases. This verifies the benefits of self-supervised
data augmentation under the graph-based CF scenario. Such
performance gap sheds light on the limitation of GNN-based CF
model: i) easily aggregating noisy information for downstream
recommendation task; ii) the over-fitting issue over sparse data,
which weakens the model representation quality.
• Obs.3: Performance against data sparsity. We further investi-
gate the recommendation performance of our AutoCF and several
representative baselines with respect to different data sparsity de-
grees. In particular, users are partitioned into four groups in terms
of their interaction frequencies, i.e., [0, 5), [5, 10), [10, 15), [15, 20).
Bars in this figure indicate the performance improvement be-
tween our AutoCF and each compared baseline corresponding
to the ratio in the right side y-axis. The performance curves of
all methods are shown in Figure 3 in terms of Recall@20 and
NDCG@20. The evaluation results demonstrate that our AutoCF
owns a consistent superiority over strong self-supervised learn-
ing baselines, which again confirms the effectiveness of our adap-
tive data augmentation in accurately learning user preference
with small labeled interaction data. The data augmentation with
stochastic operations, such as the random node/edge dropout in
SGL and corrupt embedding with random noise perturbation in
SLRec, may drop some important information for inactive users,
making the data sparsity issue even worse.

4.3 Module Ablation Study (RQ2)
We conduct ablation study to investigate the individual contribution
of different sub-modules of the proposed AutoCF to the superior
recommendation results. The results are reported in Figure 4.
Effect of graph self-attention. We study the benefit of graph
self-attention decoder for the reconstruction-based SSL task with
the variant -GSA. In this variant, a symmetry encoder-decoder
network is adopted to replace graph self-attention with the graph
convolutional network. The results manifest that our AutoCF has an
obvious improvement over -GSA, which demontrates that aggrega-
tion with global self-attention over the augmented graph improves
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Figure 5: Hyperparameter study for the proposed AutoCF in
terms of Recall@20 changes on Yelp and Gowalla datasets.

performance against the over-smoothing issue in GNNs.
Effect of reconstruction SSL signals. We study the influence of
our augmented generative self-supervised signals with the masked
reconstruction objective. From the results of AutoCF and variant -
M (without the LInfoM and Lrecon regularization), the performance
gain reveals that the design generative SSL task is beneficial for
enhancing graph-based CF paradigm, by injecting auxiliary self-
supervised signals to reflect true underlying patterns.
Effect of infomax-based semantic relatedness. The learnable
mask generation function 𝜑 (G,V;𝑘) plays a critical role in the
automated augmentation of our AutoCF model by considering
the infomax-based subgraph semantic relatedness 𝑠𝑣 . Instead, the
variant -IM removes the infomax-based loss LInfoM in the mask
generator to discard the guidance of local-global consistency. The
performance degradation of -IM variant indicates that our AutoCF
can provide meaningful gradients to guide the model training in
recovering importnat and noise-resistent collaborative relations.
Effect of learning tomask paradigm. The adaptive centric node-
based masking strategy𝜓 ′(𝑣 ;𝑘) is replaced with the randomly edge
masking in the variant -L2M. While the SSL reconstruction task
is still added for data augmentation, the non-adaptive augmention
scheme may contain noisy information for suboptimal performance.

4.4 Hyperparameter Investigation (RQ3)
This section investigates the effect of several important hyperpa-
rameters on the recommendation performance of AutoCF. The eva-
lution results in terms of Recall@20 and NDCG@20 are presented
in Figure 5. Due to space limit, the y-axis represents the relative
performance degradation ratio compared with the best accuracy.
We summarize the results with the following observations:
• Number of Centric Nodes 𝑆 : This hyperparameter determines
the size of the identified centric nodes in our learning to mask
paradigm. We vary parameter 𝑆 in the range of 200 ≤ 𝑆 ≤
2000. As shown in the results, we first observe the performance
improvement trend by increasing the size of centric node set. This
observation points out the positive effect of incorporating more
self-supervised signals into our recommendation task. However,
further increasing the number of centric nodes results in more
masked interaction edges, which might lead to damaging to the
graph structure and distort the user (item) representations.
• Masking Subgraph Scale 𝑘 : In our graph masked autoencoder,
𝑘 represents themaximum hops included in themasked subgraph.
The larger 𝑘 value indicates higher-order node dependency mod-
eling with respect to user (item) semantic relatedness. The best
performance is achieved with 2 hops. By comparing with the
adaptive masking within 1-hop subgraph, the incorporation of
2-order may bring benefits to the consideration of high-order
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Figure 6: Convergence analysis w.r.t epochs while training.

Table 3: Model efficiency study in terms of per-epoch train-
ing time (seconds) on Gowalla, Yelp, and Amazon datasets.

Model DGCF NCL HCCF SGL Ours
Gowalla 12.03s 5.38s 6.00s 8.07s 7.09s
Yelp 11.47s 3.33s 4.07s 4.88s 4.06s
Amazon 85.54s 25.62s 48.28s 49.87s 59.81s

semantic relatedness in our self-supervised augmentation.
• Contrastive Regularization Strength 𝜆1: In our model train-
ing phase, 𝜆1 determines the strength of contrastive regulariza-
tion to enhance the discrinimation ability of encoded represen-
tations. It can be seen that an approriate regularization weight
improves the model representation ability against graph over-
smoothing issue with better user preference discrinimation.

4.5 Model Efficiency Study (RQ4)
4.5.1 Model Convergence Analysis. This section investigates
the convergence of our AutoCF and the results are depicted in
Figure 6. We observe that AutoCF benefits from the incorporation
of adaptive self-supervision signals for faster convergence to 20
and 40 training epochs on Gowalla and Yelp, respectively. While
self-supervision is performed for data augmentation in state-of-the-
art contrastive recommender systems (i.e., SGL, NCL), the weak
robustness of those methods against noisy collaborative relations
in graphs , leads to their slower convergence compared with our
AutoCF model. This observation validates the training efficiency of
AutoCF, meanwhile maintaining superior performance. Such model
advantage can be ascribed to that our offered SSL task with infomax-
based semantic relatedness is helpful for guiding the optimization
with better gradients.

4.5.2 Computational Cost Evaluation. We further perform the
model efficiency study and report the evaluation results in Table 3.
While we enable the automated self-supervision signal distilla-
tion for data augmentation in recommender systems, we can still
achieve competitive efficiency compared with state-of-the-art meth-
ods. Compared with our method, SGL performs the contrastive
learning by constructing dual-view representation space for self-
supervision, which requires more time for extra branch-based aug-
mentation and graph-based embedding propagations.

We further evaluate the scalability of our method in handling
large-scale datasets collected from an online retailer site. The eval-
uation results are presented in Supplementrary Section A.5.

4.6 Model Case Study (RQ5)
Semantic Relatedness Interpretation. In Figure 7, we sample
three users (𝑢3580, 𝑢9510, 𝑢4628) with their learned subgraph seman-
tic relatedness scores 𝑠𝑣 . We see that 𝑢4628 is observed to be more
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Figure 7: Case study for i) model interpretation in learning
semantic relatednes of user interactions; ii) heatmaps of en-
coded user embeddings from two user-centric subgraphs.

likely with interaction inconsistency comparedwith𝑢3580 and𝑢9510,
because some of his/her interacted venues within a short time pe-
riod are geographically located at distant cities (e.g., Las Vegas and
Toronto). In contrast,𝑢3580’s interacted venues (e.g., Clinic, Dentists
and Pharmacy) show high semantic relatedness in the same city.
Additionally, we sample two subgraph from one identified centeric
node (𝑢1868) and other node (𝑢25311). Each row represents the em-
bedding of a user in the subgraph. By comparing the visualized
node embeddings of these two subgraphs, we observe the strong
homophily of the identified subgraph structure, which is consistent
with high semantic relatedness for generative data augmentation.
Visualization ofRepresentationDistributions.We further show
the distribution of user representations learned by different meth-
ods in 2-d space using tSNE and Gaussian kernel density estimation
(KDE) in Figure 8. The embeddings encoded by AutoCF exhibit bet-
ter uniformity compared with SOTA contrastive approaches, which
is indicative of better ability for preserving unique user preference.

5 RELATEDWORK
GNN-basedRecommender Systems. Due to the strength of GNNs,
a line of research for recommendation focuses on enhancing the
relational modeling with graph neural architectures in various rec-
ommendation scenarios [10, 41]. For example, i) Social Recommen-
dation. GNN-based social recommender systems are developed to
jointly perform message passing over the user-user and user-item
connections, including GraphRec [9], KCGN [18] and ESRF [49].
ii) Sequential/Session-based Recommendation. To improve the em-
bedding quality, many recent attempts leverage GNNs to encode
repreentations over the item sequences and capture the dynamic
user preference, e.g., LESSR [7], GCE-GNN [37], and SURGE [2]. iii)
Knowledge graph-enhanced recommendation. GNNs have also been
adopted for improve the representation over the knowledge graphs
to consider item semantic dependencies for recommendation, like
KGAT [34], KGNN-LS [33] and KGCL [46]. Towards this research
line, our AutoCF is built over GNN and advances the graph-based
interaction modeling with automated data augmentation, which is
less explored in existing solutions of recommender systems.
Self-Supervised Learning for Recommendation. Recent stud-
ies bring the benefits of SSL into the recommender systems to

(a) HCCF (b) NCL (c) Ours

Figure 8: User embedding distribution of different methods
withGaussian kernel density estimation (KDE) on Yelp data.

address the data sparsity and noise challenges [8, 38, 39, 43, 44]. For
example, contrastive SSL models have become the state-of-the-art
recommendation paradigm by performing the data augmentation
with their generated handcrafted or random contrastive views over
graph structures, such as SGL [39], HCCF [42] and NCL [24]. In
addition, some sequential models have also been improved with
contrastive learning strategies to boost the recommendation per-
formance, e.g., ICL [8] and CL4SRec [45]. However, the success of
most contrastive learning-based recommender systems relies on
manually designing effective contrastive views for reaching embed-
ding agreement, which limits the model generalization ability. To
fill this gap, this proposed AutoCF method can offer great potential
benefits for automated SSL signal distillation in recommendation.
Graph Autoencoders. Autoencoder has become an effective neu-
ral network which is composed of the encoder to map input data
into latent dimensions and the decoder to return the reconstruction
of original input. It has inspired a wide range of graph learning
applications, such as vertex feature reconstruction for node and
graph classification [17], embedding reconstruction for graph-based
recommendation [51], and structure reconstruction for molecular
graph [26]. Despite their effectiveness, most of existing graph au-
toencoders rely on the feature/structure reconstruction without
masking or randomly masking, which can hardly be robust and
adaptive to the target downstream graph learning tasks.

6 CONCLUSION
The authors of this work have identified key limitations in existing
self-supervised recommendation models, and propose a novel so-
lution called the AutoCF model. By incorporating self-supervised
learning signals through infomax-based subgraph semantic relat-
edness, AutoCF offers a graph augmentation scheme to distill in-
formative self-supervision information in an automated manner.
To evaluate the effectiveness of AutoCF, the authors conducted
extensive experiments on benchmark datasets and compared its
performance to other types of recommender systems. The results
demonstrate the effectiveness of our new approach compared with
existing recommendation methods. This work highlights the po-
tential benefits of automated self-supervised learning and provides
an effective solution for enhancing recommender systems.
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A APPENDIX
In our provided appendix, we summarize the learning process of
our AutoCF recommender in Section A.1. Then, we present the
implementation details of baseline methods in Section A.2. Addi-
tionally, we present the model robustness study against data noise
and impact study of model depth in Section A.3 and Section A.4,
respectively. Additionally, the model scalability investigation is pre-
sented in Section A.5. Finally, the derivation details of our AutoCF
model with therotical analysis are presented in Section A.6.

A.1 Learning Algorithm Description
We present the learning steps of our AutoCF in Algorithm 1.

Algorithm 1: Learning Process of AutoCF
Input: User-item interaction graph G, number of centric

nodes in masking 𝑆 , masking depth 𝑘 , learning rate
𝜂, training epochs 𝐸, number of graph iterations 𝐿,
regularization weights 𝜆1, 𝜆2.

Output: Trained model parameters Θ.
1 Initialize model parameters Θ
2 for 𝑒 = 1 to 𝐸 do
3 Initialize the maintained average difference of training

loss by ▽̄L′rec = 0
4 for mini-batch {(𝑢, 𝑖)} drawn from E do
5 Calculate the infomax-based semantic relatedness 𝑠𝑣

for each node 𝑣 (Eq 4)
6 Sample centric nodesV with Gumbel noise (Eq 5)
7 Conduct masking by G′ = 𝜑 (G,V;𝑘) (Eq 3)
8 Calculate the infomax-based loss LInfoM
9 for 𝑙 = 1 to 𝐿 do
10 Apply GCN encoding on G′ (Eq 6)
11 end
12 Sample edges G̃ for graph self-attention (Eq 7)
13 Conduct graph self-attention decoding (Eq 8)
14 Calculating the reconstruction loss Lrecon (Eq 9)
15 Calculate the self-contrastive SSL loss Lssl of the

current batch (Eq 10)
16 Calculate the recommendation loss and

weight-decay regularization and combine them
with the SSL loss to obtain L (Eq 11)

17 for each parameter 𝜃 in Θ do
18 𝜃 = 𝜃 − 𝜂 · 𝜕L

𝜕𝜃
;

19 end
20 end
21 end
22 return all parameters Θ

A.2 Baseline Implementation Details
For fair performance comparison, we present the parameter setting
details of some baselinemethods. Specifically, the weight for weight-
decay regularization is tuned from {1𝑒−𝑘 |3 ≤ 𝑘 ≤ 8} for all baseline
methods. The regularization strength of self-supervised learning
task to supplement the main recommendation objective, is tuned

from the suggested value range in compared SSL-based recom-
mender systems. For example, the regularization weight for loss bal-
ance in NCL, HCCF, SGL, SLRec is tuned from {1𝑒−𝑘 | − 1 ≤ 𝑘 ≤ 6}.
The temperature parameter in the infoNCE loss for the contrastive
learning-based baselines is tuned from {0.01, 0.03, 0.1, 0.3, 1, 3}. For
baseline models that conduct edge or node dropout (e.g. LightGCN,
SGL), the dropout rate is tuned from {0.1, 0.2, 0.3, 0.5, 0.8, 0.9}. For
methods that were proposed for recommendation with explicit
feedbacks (e.g. AutoRec, ST-GCN, GCMC), the models are trained
using BPR ranking loss. For NCF, we evaluate the results given by
the final NeuMF version. For ST-GCN, the reconstruction loss is
tuned from {1𝑒−𝑘 |2 ≤ 𝑘 ≤ 6}. The number of intents in DGCF is
tuned from {2, 4, 8}. For NCL, K-Means clustering is conducted in
each 𝑛 epochs, 1 ≤ 𝑛 ≤ 5.
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(a) Comparasion of different methods gainst noise data on Gowalla dataset
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Figure 9: Full version of performance comparison in alleivat-
ing interaction noise in terms of Recall@20 and NDCG@20.
x-axis represents the ratios of contaminated adversarial
noisy user-item interactions in the training set. y-axis shows
the performance of different methods against noise data.

A.3 Model Robustness Study
In addition to the presented results in Introduction section, we show
the full version of performance comparison of different methods in
Figure 9 to study the impact of noisy data on performance. In par-
ticular, we corrupt the training set by randomly adding user-item
interaction noisy examples with various percentages (i.e., from 10%
to 50%). We keep the test set unchanged for all compared methods.
The evaluation results show that our AutoCF consistently outper-
forms state-of-the-art SSL recommender systems under different
noise data ratios. It can be seen that our automated generative data
augmentation is more beneficial for alleviating noise issue, which
brings larger performance gain as the noise percentage increases.
Even though current contrastive learning-based methods construct
contrasting views for data augmentation, they may introduce noisy
auxiliary self-supervision signals. Such noisy signals might mis-
lead the data augmentation process. The superior performance
of AutoCF over compared methods, indicates the effectiveness of
the designed learnable mask scheme to avoid involving noise in
self-supervised augmentation, by considering the infomax-based
semantic relatedness among collaborative relationships.



Table 4: Model performance and per-epoch model training
time of representativemethods on large-scale Tmall dataset.

# Edges Metric DGCF SGL HCCF NCL Ours

1.6M
R@20 0.0221 0.0258 0.0272 0.0286 0.0299
N@20 0.0258 0.0296 0.0309 0.0337 0.0354
Time 3569.5s 1009.4s 782.3s 848.0s 892.4s

2.9M
R@20 0.0253 0.0278 0.0283 0.0294 0.0306
N@20 0.0279 0.0311 0.0319 0.0334 0.0358
Time 4828.6s 1187.0s 1040.5s 1015.3s 1158.8s
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Figure 12: Convergence analysis w.r.t epochs while training
on Gowalla and Yelp datasets, in terms of NDCG@20.
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Figure 10: Hyperparameter study for AutoCF in terms of
NDCG@20 changes on Yelp and Gowalla datasets.
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Figure 11: Impact of model depth and dimensionality on
the performance of AutoCF, in terms of Recall@20 and
NDCG@20 on both Yelp and Gowalla datasets.

A.4 Imapct of Depth and Dimensionality
In this section, we present the results of impact study for model
depth investigation and embedding dimensionality. From evalua-
tion results in Figure 11, we have the following observations:
• Number of Graph Neural Iterations 𝐿: This hyperparameter
determines how many iterative graph neural network layers are
applied in the masked autoencoder with graph self-attention. As
shown in results, too few graph iterations result in insufficient
graph connectivity modeling and damage the graph autoencod-
ing learning. However, further increasing the graph iterations
yields limited improvements due to oversmoothing.

• Embedding Dimensionality 𝑑 : This is another general hyper-
parameter for model-based collaborative filtering. It controls
the representation capacity of our AutoCF. From the evaluation
results, we observe typical underfitting-to-overfitting curves,
where the performance increases dramatically with the increase
of 𝑑 at the beginning (from 8 to 16 or 32), and then the improve-
ments become marginal when further increasing 𝑑 to 64.

Figure 10 presents the supplementary results for Section 4.4.

A.5 Model Scalability Study
In this section, we report the running time of several methods in
handling large-scale datasts (with millions of interactions) from an
online retail platform. The system configuration for evaluation is
Intel Xeon W-2133 CPU, NVIDIA TITAN RTX, with 64GB RAM.
From results listed in Table 4, we can still observe that AutoCF
is able to achieve competitive efficiency compared with baselines,
meanwhile maintaing much better recommendation performance.
Convergence study in terms of NDCG@20 are presented in Fig-
ure 12 to supplement the results reported in Section 4.5.

A.6 Theoretical Analysis
We first give derivations on the gradients related to Lrecon. The
reconstruction loss can be decomposed as follows:

−Lrecon =
∑︁
𝑣1,𝑣2

ĥ
⊤
𝑣1 · ĥ𝑣2 =

∑︁
𝑣1,𝑣2

(h𝑣1 + h̃𝑣1 )⊤ (h𝑣2 + h̃𝑣2 )

=
∑︁
𝑣1,𝑣2

h⊤𝑣1h𝑣2 + h⊤𝑣2 h̃𝑣1 + h⊤𝑣1 h̃𝑣2 + h̃
⊤
𝑣1 h̃𝑣2 (14)

For simplicity, here we only consider 𝑣1, 𝑣2 from the masked sub-
graph, which have no edges in the augmented graph and are thus
not influenced by the graph convolutions. h𝑣1 ,h𝑣2 are randomly-
initialized ego embeddings for node 𝑣1, 𝑣2, and h̃𝑣1 , h̃𝑣2 are graph
attention-based embeddings, which can be represented as:

h̃𝑣 =
∑︁
𝑣′

𝛽 ′𝑣,𝑣′W
′
Vh𝑣′ (15)

where 𝛽 ′
𝑣,𝑣′,W

′
V denote the learned attention weights and the value

transformation. Here we omit the multi-head setting for simplifica-
tion. Then, the gradient of 𝜕Lrecon/𝜕h𝑣1 in Eq 12 is obtained.

Next, we show the derivations for the lower bound of the re-
latedness between a random pair of nodes 𝑣1 and 𝑣 ′. Assuming
the embedding vectors h𝑣,h𝑣1 ,h𝑣′ are unit vectors, the pairwise
distance can be calculated using a geometric trick, as follows:

𝑑𝑣,𝑣1 = 2 sin
𝜃𝑣,𝑣1

2
, 𝑑𝑣,𝑣′ = 2 sin

𝜃𝑣,𝑣′

2
, 𝑑𝑣1,𝑣′ = 2 sin

𝜃𝑣1,𝑣′

2
(16)

where 𝜃𝑣,𝑣1 , 𝜃𝑣,𝑣′, 𝜃𝑣1,𝑣′ ∈ [0, 𝜋] denote the angles between the cor-
responding vector pairs. As 𝑣, 𝑣 ′, 𝑣1 form a triangle (or in a line),
the pairwise distances meet the following ristriction:

𝑑𝑣1,𝑣′ ≤ 𝑑𝑣,𝑣1 + 𝑑𝑣,𝑣′ ; sin
𝜃𝑣1,𝑣′

2
≤ sin

𝜃𝑣,𝑣1

2
+ sin

𝜃𝑣,𝑣′

2

sin2 𝜃𝑣1,𝑣′

2
≤ (sin

𝜃𝑣,𝑣1

2
+ sin

𝜃𝑣,𝑣′

2
)2 < sin2 𝜃𝑣,𝑣1

2
+ sin2 𝜃𝑣,𝑣′

2
1 − cos𝜃𝑣1,𝑣′ < 2 − cos𝜃𝑣,𝑣1 − cos𝜃𝑣,𝑣′

cos𝜃𝑣1,𝑣′ > cos𝜃𝑣,𝑣1 + cos𝜃𝑣,𝑣′ − 1
cos(𝑣1, 𝑣

′) > cos(𝑣, 𝑣1) + cos(𝑣, 𝑣 ′) − 1 (17)
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